

Status Quo of Lidar/Sodar: How to Gain Acceptance for Remote Sensing

A. Albers

Deutsche WindGuard Consulting GmbH

Oldenburger Straße 65, 26316 Varel, Germany a.albers@windguard.de

testing- and calibration laboratory with quality management system according EN ISO/IEC 17025:2005

Status of Revision of IEC 61400-12-1

- Committee Draft (CD) Edition 2 available since September 2011
- Integration of national comments ongoing
- Committee Draft for Voting (CDV) expected not before end of 2012
- Final revision expected in 2013
- Annex L on remote sensing implemented
- Annex L based on work of Lidar Acceptance Project
 - active from May 2009 to June 2011
 - members: Vestas, Siemens Enercon, Riso/DTU, GL-GH, WindGuard (project leader)
- Limitation to ground based lidars/sodars due to limited time frame

Wind Speed Definition/Measurement Revision of IEC 61400-12-1

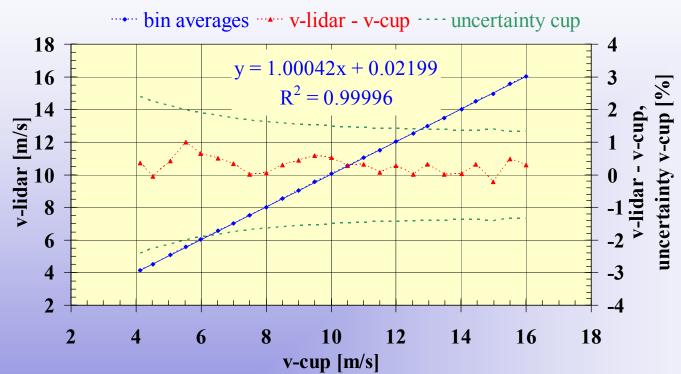
- Case 1: wind speed measured only at hub height (with mast or remote sensor).
- Case 2: wind speed measured over whole rotor with one instrument type (mast or remote sensor).

$$\mathbf{v}_{eq} = \frac{1}{\mathbf{A}} \cdot \left(\int_{H-R}^{H+R} \mathbf{v}_{m}^{3} d\mathbf{A} \right)^{\frac{1}{3}}$$

- Requires validation of remote sensor in terms of absolute wind speed measurements at special test site
- If remote sensor applied: control met mast with height of at least H-D/2 needed at site of application
- Case 3: wind speed measured at hub height H by cup anemometer, shear measurement by remote sensor

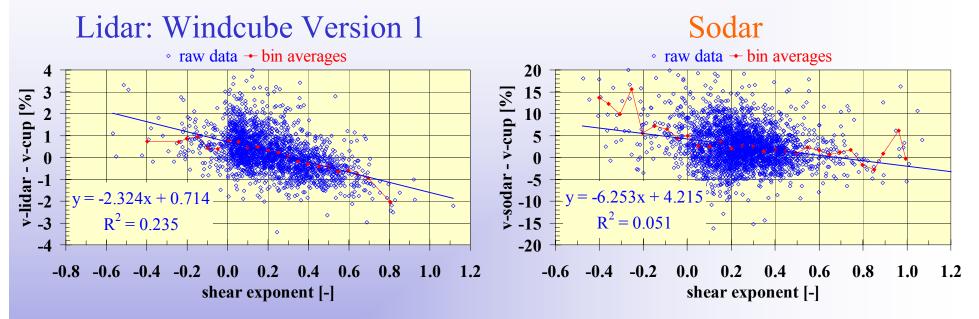
$$v_{eq} = v_{H,cup} \frac{V_{eq,remote}}{v_{H,remote}}$$

- Requires validation of remote sensor in terms of relative wind speed measurements at special test site (shear measurement)!



Fundamental Requirements

Step	Requirement	Method	Replacement for
1	traceability to	Verification Test	wind tunnel calibration
	national standards	of each unit	of each cup anemometer
2	repeatability	Sensitivity Test/Classification	classification
<u> </u>	repeatability	type specific	cup anemometer type
	control	control by mast	control anemometer,
3		with height $>=$ H-D/2	validation of results of Verification Test
			and Sensitivity Test
	complete analysis of uncertainty	cumulating uncertainties of	cumulating of uncertainties of:
		4a Verification Test	wind tunnel calibration
		4b Sensitivity/Classification	classification
		4c control by mast	after-calibration, in-situ testing
4			added uncertainty in case of non-compliance
4			to Verification Test and Sensitivity Test
		4d inhomogeneous air flow	_
		4e mounting	mounting
		4f site effects	
		(positioning relative to turbine)	site effects


1. Traceability to National Standards

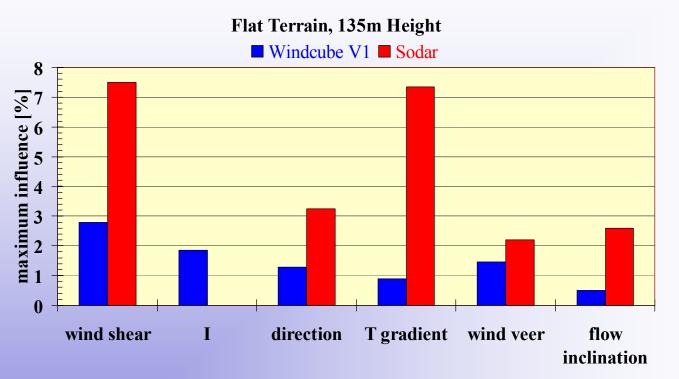
- By comparison to traceably calibrated reference sensors on mast, (e.g. at German Test Station for Remote Sensing Devices or at DTU, Denmark)
- No Correction/Calibration foreseen
- Analysis focuses on bin averages

2. Sensitivity Test Win Example Wind Shear, 135m height

- Problem: Environmental conditions different at application of lidar/sodar and at Verification Test
- Solution:

Type specific sensitivity of lidar/sodar error on environmental variables needs to be investigated

• Results in case of lidars mostly much better than in case of sodars


2. Classification Proposal for Ranges of Variables

		f	lat terra	ain	cor	nplex te	rrain	
independent variable		max	min	range	max	min	range	source
shear exponent alpha	[-]	0.80	-0.40	1.20	0.80	-0.40	1.20	experience
turbulence intensity I	[-]	0.24	0.03	0.21	0.36	0.03	0.33	IEC 61400-12-1
rain (yes=1, no=0)	[-]	1	0	1	1	0	1	by definition of sensor
availability lidar	[%]	100	80	20	100	80	20	by definition of filter
wind direction	[°]	360	0	180	360	0	180	deviation of 2 directions
wind direction								is maximum 180°
air temperature T	[°C]	40	0	40	40	-10	50	IEC 61400-12-1
air density	[kg/m ³]	1.35	0.90	0.45	1.35	0.90	0.45	IEC 61400-12-1
T difference 133m-10m	[K]	6	-2	8	6	-2	8	experience
flow inclination angle	[°]	3	-3	6	15	-15	30	IEC 61400-12-1
wind veer dir133-dir35	[°]	20	-20	40	20	-20	40	experience

complex terrain application not allowed in IEC 61400-12-1

2. Classification Max. Influence of Variables

- Maximum influence calculated on basis of Sensitivity Test
- Criteria on range coverage of variables
- Criteria on significance of variables
- Criteria on correlation of environmental variables
- Influences of the relevant variables cumulated to possible total error

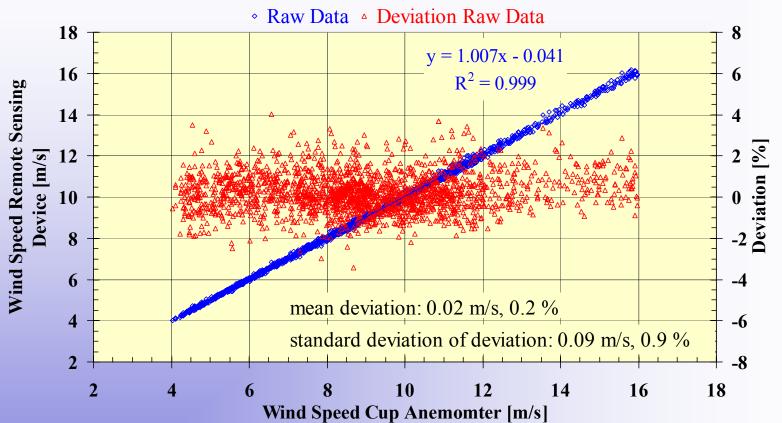
2. Accuracy Classes/Uncertainty Due to Sensitivity

Lidar: Windcube Version 1

(preliminary results)

height	flat terrain	complex terrain		
[m]	[-]	[-]		
135	2.7	3.6		
104	4.9	8.1		
72	3.9	11.3		

Sodar

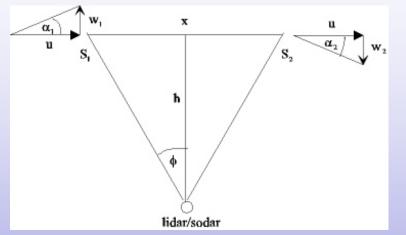

(preliminary results)

height	flat terrain	complex terrain
[m]	[-]	[-]
135	8.3	10.6
72	5.9	13.8

- Class numbers represent maximum errors
- High class numbers partly due to the high ranges of variables
- Solution: consider only mean deviation of environmental variables at application of lidar/sodar and at Verification Test
 - often much lower uncertainties than by application of class number
 - recommended in revision of IEC 61400-12-1

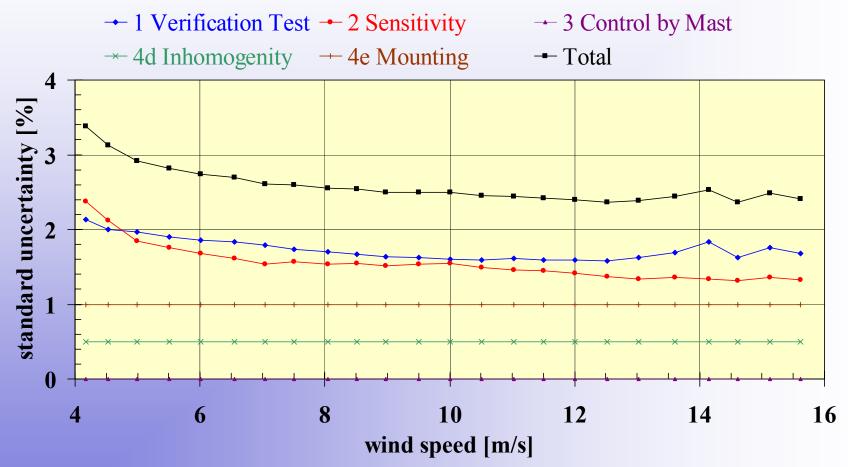
1. Verification Test, Random Noise Error

- Random Noise Error: Part of the scatter not explained by sensitivities to environmental variables
- In case of good lidar <1%, in case of sodar about 5%
- Uncertainty only relevant for single 10-minute periods, (automatically integrated in statistical uncertainty of bin averages, e.g. power curves, site assessments)


3. Control of Lidar at Application with Small Met Mast

- Check on obvious outlier data or malfunctioning
- Check whether systematic deviations of lidar/sodar and control anemometer in expected range under consideration of uncertainties of reference measurements and sensitivities of lidar/sodar:
 - feed-back algorithm: additional uncertainty if criteria not met
 - helps to avoid overoptimistic lidar/sodar classifications
- Check whether scatter of deviations of lidar and control anemometer as expected:
 - additional uncertainty if criteria not met, only relevant in terms of single 10-minute periods, not for bin averages
- In-situ test of lidar/sodar (test on changes of accuracy within measurement period)

4.d Inhomogeneous Airflow Over Probe Volumes


•	Assumption: equal wind conditions in	
	different probe volumes	

- Significant problem in complex terrain for almost all lidars and sodars commercially available today
- Key reason for not accepting lidar/sodar in complex terrain by IEC 61400-12-1 MT
 - Analysis of uncertainty by flow model or Mann Bingöl approach

α1	α_2	relative error
[°]	[°]	[%]
0	1	1.5
-1	1	3.0
-1	1	3.0
0	5	7.6
5	10	7.7

Mann Bingöl Model			
$u_{lidar} = u$	$u + h \frac{\partial W}{\partial x}$		
$\frac{u_{lidar} - u}{u} = \frac{1}{2}$	$\frac{\tan \alpha_2 - \tan \alpha_1}{2 \tan \phi}$		

Total Uncertainty Windcube V1 WindGuard Example Flat Terrain

• Example: site with high wind shear, 135m measurement height

• Standard uncertainty not much higher than in case of best practice cup anemometry

Current Status

- Lidars and sodars of almost all major brands tested
- Results often not as expected by system suppliers, partly confidential
- Best systems just good enough for flat terrain applications
- Consistent results at round robin test of same lidar by WindGuard and DTU
- Accuracy of lidar/sodar by definition lower than accuracy of reference cup anemometers
- Remote sensors need qualified testing before application (unit and type specific)
- Methodology provided by IEC 61400-12-1, Ed. 2 as relevant for site assessment measurements as for power curve tests (see MEASNET Site Assessment Procedure, German Technical Guideline 6)